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Abstract. We present a detailed study of a two-dimensional lattice model introduced to describe
mud cracking in the limit of extremely thin layers. In this model to each bond in the lattice is assigned
a (quenched) random breaking threshold. Fractures proceed by selecting the ‘weakest’ part of the
material (i.e. the smallest value of the threshold). A local damage rule is also implemented, by
using two different types of weakening of the neighbouring sites, corresponding to different physical
situations. We present the results of numerical simulations on this model. We also derive some
analytical results through a probabilistic approach known as run time statistics. In particular, we
find that the total time to divide the sample scales with the square power L2 of the linear size L of
the lattice. This result is not straightforward since the percolating cluster has a non-trivial fractal
dimension. Furthermore, we present here a formula for the mean weakening of the whole sample
during the evolution.

1. Introduction

In recent years, many models have been proposed to describe the formation of cracks in different
kinds of material. These models are usually based either on on-lattice cellular automata or on
continuous equations [1–3].

In this paper we present a careful and detailed study of a minimal fracture model that has
been introduced in order to describe the main features of paint desiccation-like phenomena [4].
The purpose of this paper is to focus on the statistical properties of these phenomena on the
basis of recent experimental findings [5]. Following the results of [5], we assumed that the
main source of stress is given by the local friction between the layer of material and the bottom
surface of the container. Moreover, it has been noticed that the characteristic size of crack
patterns varies linearly with the layer thickness. In the limit of zero thickness crack patterns
lose their polygonal structure (the characteristic size of the polygons is zero) and become
branched fractals.

In order to model this behaviour, we present here a very simple lattice model (introduced
in [4]), inspired by invasion percolation (IP) [6] and by the vectorial and scalar models described
in [7, 8]. Here, we present an extended report of the property of the model, together with a
detailed description of the analytical calculations, as well as new numerical and theoretical
results.

Most of the cellular automata models for quasi-static fractures, describe crack evolution
through a non-local Laplacian field (i.e. electric field) acting on a solid network of bonds or
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sites [8]. In some of them the stress field step by step is computed by minimizing the energy
of the system during the evolution. In such a case one deals with vectorial equations whose
components are similar to the equations describing the action of a Laplacian field [7].

In the model presented instead, no explicit field is present. The effect of the stress is played
by an extremal breaking rule and by the damage of the local random breaking thresholds.
Indeed the damage rule introduces a correlation in the system that drives the evolution through
the nearest neighbour bonds of the bond just removed. According to the kind of fracture we deal
with, one can introduce different types of damage. In this paper two limiting cases are studied.
This model is inspired by the above cited experimental observations [5] that, in an extremely
thin layer of mud or paint, the only source of stress is the local friction with the container.
Moreover, since the drying mud is a mixture of a liquid and a solid (usually amorphous)
phase, no long-range stress relaxation is present, although the growing crack can affect the
properties of the medium in its neighbourhood. Some important physical properties of the
model are explained by using an approach based on the run time statistics (RTS) scheme [9].
In particular, we are able to compute some relevant quantities, such as the evolution of the
breaking probability, and of the probability distribution of breaking thresholds.

The paper is organized as follows. In section 2 the model is described. In section 3 the
results of numerical simulations are presented. In section 4 the model is studied analytically,
and theoretical and numerical results are compared.

2. The model

We considered a square lattice where a random variable xi is assigned to each bond i. The xi
are independently extracted from an uniformly distributed probability density defined between
0 and 1. At each time-step t , the bond with the smallest value of the variable is broken
(removed). Then damage (weakening) is applied, by reducing the value of x for the nearest
neighbour bonds. This evolution is repeated until a connected, percolating, subset (infinite
cluster) of removed bonds appears, dividing the system into two disconnected parts.

In the following, we will indicate the set of broken bonds up to time t by Ct , and the
set of non-broken bonds by ∂Ct . The number of bonds belonging to Ct is ‖Ct‖ = t , while
‖∂Ct‖ = N − t (where N is the total number of bonds in the lattice), in fact ∂Ct is composed
by the whole lattice without the bonds in Ct . Two different types of weakening are actually
applied: either by direct weakening or by re-distribution of the stress. In the first case (rule
1), the nearest neighbours of the removed bonds are weakened, by extracting a new threshold
x ′
i for them between 0 and the former value xi (in this case an average weakening of one half

of the former value at time is obtained). In the second case (rule 2), each nearest neighbour
has a threshold weakened by a fraction of the threshold of the bond just removed. Both
cases mimic the damage produced by the enhancement of the stress nearby crack tips. The
first case refers to a situation where stochasticity (thermal fluctuations) is important in the
determination of the new thresholds [1]. The second case refers to a situation where the
disorder distribution around the tip plays the leading role. As regards the real case of mud
cracking, the two-dimensional lattice is supposed to describe a very thin layer of mud (or paint),
and the quenched disorder accounts for local stress induced by inhomogeneous desiccation of
the sample. Since the evolution of cracks in mud desiccation is assumed to be a slow process,
the dynamics is assumed to be quasi-static, i.e. one microscopical break with relative damage
for each time-step. Some authors correctly point out that otherwise time-dependent effects
and a non-equilibrium dynamics are relevant in crack propagation [10].

In this model the external field (applied stress) and the response of the material (strain
of bonds) have been eliminated. The only relevant quantity is the breaking threshold for
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Table 1. Fractal dimension of the spanning cluster for different sizes and for the two damage rules.

L = 64 L = 128 L = 256

Df (damage rule 1) 1.75(2) 1.74(2) 1.74(2)
Df (damage rule 2) 1.73(2) 1.75(2) 1.76(2)

the bonds, whose dynamics is suitably chosen to reproduce the evolution of cracks. This
threshold simulates the presence of a local stress field, acting directly on each bond. Our
assumption is based on the experimental results in [5], where, as the mud layer becomes
thinner, only the inhomogeneities drive the nucleation of cracks. Furthermore, the hypothesis
of crack development under the same state of strain is usually applied in the presence of
thermal gradients [11]. Furthermore it is also commonly reported in experiments of loading
of softened material [12–14]. Hence, such a model is particularly suitable to describe, for
example, paint drying, where the stress applied to the painted surface depends on the local
action of external conditions (density gradient in the paint). Moreover, its simplicity allows
us to study analytically the properties of the model and to compute some quantity of interest,
such as the mean resistance of the sample.

3. Numerical results

Numerical simulations, with cylindrical symmetry (periodic boundary conditions in the
horizontal direction), for various system sizes L have been performed. The dynamics stops
as soon as a crack spanning the system in the vertical direction appears. Both damage rules
are implemented, and they are both discussed. Despite the simplicity of the dynamical rules,
the results are rather interesting. We have computed the fractal dimension of the percolating
cluster, the distribution of the size of clusters of broken bonds, the avalanche size distribution
(in order to check whether long-range temporal correlations are present) and the probability
distribution of the breaking thresholds at the percolation time. An avalanche can be defined as
an ensemble of causally and geometrically connected breakdowns (see below for a rigorous
definition). Under this respect the size distribution of such avalanches represents the probability
of a large or small response of the system to an external solicitation. For example a power-law
distribution represents a critical state of the system where the response does not show any
characteristic size.

The fractal dimension Df of the percolating cluster is computed using the box-counting
method. The analysis is restricted to the spanning cluster to reduce the finite-size effects
present in the smaller clusters. The results of the box-counting analysis are reported in table 1
for the different sizes and for the two damage rules. The values ofDf for the two damage rules
coincide within the error bars.

The connected clusters of broken bonds are identified with a standard cluster counting
procedure, based on the Hoshen–Kopelman algorithm [15]. Also the distribution of finite
clusters is nontrivial, showing a clear power law with exponent τc = 1.54(2) (see figure 1(a))
for rule 1 and τc = 1.57(3) for rule 2. The plots labelled with (b) in figure 1 refer to the
avalanche size distribution. This quantity is interesting with respect to recent experiments [16]
and models [7, 8] where a power law behaviour of the acoustic emission has been related
to self-organized criticality (SOC) [17]. The presence of a SOC-like behaviour would mean
that the dynamics of fractures itself leads the sample to a steady state where small variation
of the external field can trigger reaction at any length-scale. In particular the external field
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Figure 1. (a) Probability distribution (log10–log10 plot) Dc(s) of the cluster size, for L =
64, 128, 256. (b) Avalanche size distribution (linear–log10 plot) Dav(t) for L = 128, 256. (c) and
(d) The same quantities for the weakening rule 2.

in this case is the applied stress, and the response of the sample can be considered as the
energy released (acoustic emission) by one avalanche of cracks, where avalanche means a
causally and geometrically connected series of breakdowns. In this oversimplified model the
external stress can be considered constant, since the only change after any single breakdown
is due the damaging of the nearest neighbours. Consequently, in this paper the size of an
avalanche is monitored as a measure for the acoustic emission. An avalanche can be defined
as follows. Let us suppose that a bond i grows (i.e. it is broken) at time t ; this is the initiator
of an avalanche, which is defined as the set of events geometrically and causally connected
to the initial one (bond i). ‘Causal’ connection refers to the weakening following any bond
breaking. In particular, when bond i grows at time t , the avalanche goes on at time t + 1 if a
unbroken first-neighbour bond j of i is removed. At time t + 2 the avalanche goes on if a bond
k grows where k is a unbroken first neighbour of i or j . A linear–log plot of the probability
distribution of avalanche size, versus sample sizeL, is shown in figure 1(b). After a power law
transient, an exponential distribution is reached, indicating that a characteristic size exists for
the avalanches. One can note that for weakening rule 1 and weakening rule 2 simulations give
qualitatively similar results, although for rule 2 the characteristic time of avalanches is smaller.
This is easily explained, since the damage rule 2 is less strong than rule 1 and, consequently,
the causal connection between subsequent breaking events is weaker.

This result for avalanches is similar to those obtained for a scalar model of dielectric
breakdown, but differs from the avalanche behaviour in models of fracture [7, 8]. The
explanation of this behaviour is motivated by two arguments. Firstly, in the present definition
of an avalanche the threshold is changed only for the nearest neighbours. This introduces a
typical length scale, while other definitions consider as the threshold the ratio between local
field and resistivity, thus giving the possibility of large-scale correlations. Secondly, in this



Damage and cracking in thin mud layers 8017

model broken bonds are removed from the system. This represents a substantial difference
from many SOC models with quenched disorder presented in the literature. For example, in a
simple toy model of SOC due to Bak and Sneppen [18] (where a similar refresh of thresholds
is present) the dynamics produces clear power laws in the avalanche distribution. There, each
site (species) deleted is replaced by a new one and is not definitively removed. In our model,
instead, the number of candidates ∂Ct to be broken at each time-step decreases in time. This
is a crucial point, since indeed power law behaviour in the presence of a scalar field seems
to be related to a ‘reconstructing rule’ that allows one to deal with a system where removed
bonds are replaced by new ones. Therefore, only in the case of plastic deformation, one is in
the presence of a steady state, as correctly pointed out by [8].

To summarize the content of this section, the fractal dimension, the cluster size distribution
and, to some extent, the avalanche size distribution seem to be universal with respect to the two
different local damage rules. In the next section the study will focus on some quantities which,
instead, are not universal and reproduce the evolution of the mechanical properties of the
material during the fracturing dynamics. These quantities are the average probability density
of breaking thresholds, or histogram, φt(x), and as a by-product the mean breaking threshold
〈x〉(t), which expresses the average resistance to breaking, or rigidity, of the system at time
t . These quantities will be studied both numerically, and analytically, by using a probabilistic
tool called RTS [9].

4. RTS derivation of the average weakening of the material

As seen above, the evolution of the crack is described by a quasi-static extremal dynamics in a
medium with quenched disorder. The most important question for a theoretical comprehension
of the model is: which is the source of the spatio-temporal correlations developed by the
dynamics? As pointed in [9] in relation to IP, the source can be found in the memory effects
developed by the evolution of the dynamics itself via an interplay between dynamical rules
and quenched disorder.

This can be simply realized observing that the knowledge of the growth history up
to a time t , provides information about the probability distribution and the correlations of
the random bond thresholds. This information has to be added to the original information
that the thresholds are independently extracted from the uniform probability density in the
interval [0, 1]. Moreover this information influences the probabilities of the different possible
continuations of the dynamics for larger time. This memory effect can be studied using
carefully the notion of conditional probability. This kind of approach to growth dynamics with
quenched disorder has been developed in [9,19], with particular reference to IP. This peculiar
probabilistic algorithm is called RTS. A particular modification of this tool is presented here
taking into account the damage mechanism, which is not present in IP-like models. Finally,
RTS is used in order to predict analytically some relevant quantities such as the evolution of
both the average probability density of breaking thresholds of unbroken bonds and of the mean
resistance to breakdown x(t) of the material.

Here we provide directly the final RTS formulas together with a brief sketch of their
meaning. A detailed derivation of the analytical results of this section is given in the appendix.
The RTS approach permits us mainly to answer the following two questions, once given a
certain time-ordered geometrical path followed by the dynamics up to time t :

(1) what is the effective probability density function of the variablesxi of the lattice conditioned
to the knowledge of this fixed past dynamical history? and

(2) what is the conditional probability of any further growth event at the next time-step?
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In order to introduce operative formulas, let us assume we know the ‘one-bond’ effective
probability density functions pi,t (x) (conditioned to the past dynamical history) for each
non-broken bond i. As clarified in the appendix, this ‘one-bond’ formulation of RTS is an
approximation of the rigorous one. However, as shown in [20], it is a good approximation
when the number of random numbers is large (as in this case).

First of all one can write [9] the breaking probability µi,t for each bond i at that time-step:

µi,t =
∫ 1

0
dx pi,t (x)

[ ∂Ct∏
k( �=i)

∫ 1

x

dy pk,t (y)

]
(1)

where ∂Ct is the whole set of unbroken bonds. Note that at time t the number of bonds in
∂Ct is (2L2 − t), i.e. the total number 2L2 of bonds in a square lattice of side L minus the
number of broken bonds before time t . Equation (1) expresses nothing other than the effective
probability that xi is the minimum in the set ∂Ct conditioned to the past history. The next
important step is to update each pj,t (x) by conditioning them to this latest growth event. In
this way one obtains the pj,t+1(x)s conditioned to the history up to the time-step t + 1. The
effective probability density at time t + 1 of the latest grown bond i is usually calledmi,t+1(x),
in order to distinguish it from the densities of still unbroken bonds. It is given by

mi,t+1(x) = 1

µi,t
pi,t (x)

[ ∂Ct∏
k( �=i)

∫ 1

x

dy pk,t (y)

]
. (2)

Equation (2) (multiplied by dx) gives the ‘effective’ probability that x � xi � x + dx,
conditioned to the past fixed dynamical history (time-ordered path) up to time t + 1: the
‘memory’ of the history up to time t is ‘recorded’ in the set of functions pk,t (x), where k runs
over all the bond belonging to ∂Ct , while the last step is recorded in the particular functional
relationship between mi,t+1(x) and the set {pk,t (x)} itself. This relationship is imposed by the
order relation among the interface variable xk , i.e. by the fact that xi is the minimum in ∂Ct .
Note that, once a bond is broken, it no longer participates in the dynamics. For this reason, the
‘effective’ probability density function of its threshold no longer changes in time and is given
definitely by equation (2).

For the remaining bonds one has to distinguish between the unbroken bonds far away from
the bond i and the unbroken nearest neighbour bonds, which will be weakened by the growth
of bond i. The updating rules, for the two different mechanisms of damage, differ only for this
last set of bonds. For the non-weakened bonds, one has in both cases the following updating
equation:

pj,t+1(x) = 1

µi,t
pj,t (x)

∫ x

0
dy pi,t (y)

[ ∂Ct∏
k( �=i,j)

∫ 1

y

dz pk,t (z)

]
. (3)

The updating equations for the weakened bonds are instead the following.

(1) For damage mechanism 1:

pj,t+1(x) = 1

µi,t

∫ 1

0
dy

1

y
θ(y − x)pj,t (y)

∫ y

0
dz pi,t (z)

[ ∂Ct∏
k( �=i,j)

∫ 1

z

dupk,t (u)

]
. (4)

(2) For damage mechanism 2 (see the appendix):

pj,t+1(x) = 1

µi,t

∫ 1

0
dy

[ ∂Ct∏
k( �=i,j)

∫ 1

y

dz pk,t (z)

]
pi,t (y)pj,t

(
x +

y

ni,t

)

×θ
(

ni,t

ni,t − 1
x − y

)
θ(ni,t (1 − x)− y). (5)
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Note that the main difference between equations (4) and (5) is due to the fact that the number
of nearest neighbours ni,t of the bond i at time t appears explicitly only in the latter, i.e. only
in the second model (rule 2) is the damage an explicit function of the geometry, while in the
former (rule 1) the damage is a ‘one-bond’ process.

Equations (1)–(3) coincide with those introduced for the RTS approach to IP (apart from
the different definition of the growth interface ∂Ct ). Equations (4), (5), however, are new
and account for the nearest neighbour weakening. Equations (1)–(5) allow one to study the
extremal deterministic dynamics as a kind of stochastic process with memory. In particular,
µi,t can be used to evaluate systematically the statistical weight of a fixed time-ordered growth
path, while the pj,t (x) store information about the growth history.

A very important quantity to characterize the properties of the dynamics is the empirical
distribution (or histogram) of unbroken thresholds. This quantity is defined as

ht (x) =
∑
j∈∂Ct

pj,t (x) (6)

where ht (x) dx is the number of non-broken bonds between x and x+ dx at time t , conditioned
to the past dynamical history.

Considering the effect of the growth of bond i at time t on this quantity, one obtains

ht+1(x) = ht (x)−mi,t+1(x)−
∑
j (i)

pj,t (x) +
∑
j (i)

pj,t+1(x) (7)

where j (i) indicates the sum over the ni,t unbroken nearest neighbours of i. Moreover,
mi,t+1(x) and pj,t+1(x) are given respectively by equations (2)–(5) (for rule 2). Since the
histogram is an almost self-averaging quantity of the model in the large-time limit, one can
evaluate its shape in the ‘typical’ realization of the dynamics, taking the average over all the
possible histories up to time t + 1. The notation 〈· · ·〉 is introduced to indicate this average.
The lhs of equation (7) can be computed as

〈ht+1(x)〉 = ‖∂Ct+1‖φt+1(x) = [N − (t + 1)]φt+1(x) (8)

where N = 2L2 is the total number of bonds in the lattice and φt(x) represents the
average threshold density function over the unbroken bonds at time t (normalized to 1), i.e.
φt(x) = pk,t (x) where k is a generic interface bond. For the rhs of equation (7) the main
difficulty arises in the evaluation of 〈mi,t+1〉 and 〈∑j (i) pj,t+1(x)〉. Following [9], one can
write

〈mi,t+1〉  (N − t)φt (x)
[

1 −
∫ x

0
dy φt (y)

]N−t−1

. (9)

In obtaining equation (9), we used the definition of φt(x) and the following approximation:〈 ∏
k∈∂Ct

pk,t (xk)

〉
=

∏
k∈∂Ct

〈pk,t (xk)〉 =
∏
k∈∂Ct

φt (xk). (10)

Using again the definition of φt(x), one obtains〈 ∑
j (i)

pj,t (x)

〉
= ntφt (x) (11)

where nt = 〈ni,t 〉. Using equation (4), corresponding to the weakening rule 1, and the
approximations given by equation (10), one has〈 ∑
j (i)

pj,t+1(x)

〉
= nt (N − t)
N − t − 1

∫ 1

x

dy
φt (y)

y

{
1 −

[
1 −

∫ y

0
dz φt (z)

]N−t−1}
. (12)
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Figure 2. Fit of nt (L) with the scaling form (15) (weakening rule 1) for L = 32 (a) and 64 (b).

The equation for the φt+1(x) for rule 1 will finally read

φt+1(x) = N − t − nt
N − t − 1

φt(x)− N − t
N − t − 1

φt(x)

[
1 −

∫ x

0
dy φt (y)

]N−t−1

+nt
N − t

(N − t − 1)2

∫ 1

x

dy
φt (y)

y

{
1 −

[
1 −

∫ y

0
dz φt (z)

]N−t−1}
. (13)

Note that even at percolation time N − t is a large number. For this reason terms
in equation (13) containing the term [1 − ∫ x

0 dy φt (y)]N−t−1 are negligible for x such that∫ x
0 dy φt (y) is finite (i.e. larger than 1/(N − t)). It is easy to show that the continuum limit of

equation (13), for such values of x, is invariant under the rescaling L → aL (i.e. N → a2N)
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Figure 3. Fit of nt (L) with the scaling form (15) (weakening rule 2) for L = 32 (a) and 64 (b).

and t → a2t . This result is based on the assumption that

nt (L) = na2t (aL). (14)

The numerical simulations suggest the following scaling form for nt (L) (see figure 2):

nt (L) = nmax

[
1

1 + t/AL2

]β
(15)

where β = 0.23(2),A = 0.030(2) and nmax = 6 is the lattice coordination number. This form
for nt satisfies equation (14).

The study of weakening rule 2 is quite similar. Equations (1)–(3) remain the same, while
the conditioned probability density for the weakened bonds is given by equation (5).
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Figure 4. Solution of equation (13) for the histogram φt (x) at the spanning time (b), compared
with simulations (a), for weakening rule 1.

By following the same steps as above, the following equation for φt+1(x) is obtained:

φt+1(x) = N − t − nt
N − t − 1

φt(x)− N − t
N − t − 1

φt(x)

[
1 −

∫ x

0
dy φt (y)

]N−t−1

+nt
N − t

N − t − 1

∫ 1

0
dy

[
1 −

∫ y

0
dz φt (z)

]N−t−2

φt(y)

×φt
(
x +

y

nt

)
θ

(
nt

nt − 1
x − y

)
θ(nt (1 − x)− y). (16)

All the assumptions we made for case 1, including the scaling ansatz given in equation (14),
are valid for case 2. In particular, from numerical simulations, one can find the following
behaviour for nt (L) (see figure 3):

nt (L)  nmax exp

(
− t

AL2

)
. (17)

The analytical study of both kinds of weakening allows us to make three important predictions.
First, we find both theoretically, from the numerical solution of equations (13), (16), and from
the numerical simulations of the model, a discontinuity in the histogram (see figures 4 and 5),
indicating that the system evolves in such a way as to remove all bonds with threshold smaller
than some critical value xc. Second, from the symmetry properties of equations (13), (16), we
deduce that the number tsp(L) of broken bonds at the percolation time is proportional to L2,
even though the percolating cluster is fractal. This result, confirmed by numerical simulations
(see figures 6(a) and 7(a)), and compatible with the scaling function (15) for nt (L), is deduced
supposing that at the percolation time the shape of the histogram is independent of L, an
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Figure 5. Solution of equation (13) for the histogram φt (x) at the spanning time (b), compared
with simulations (a), for weakening rule 2.

assumption which fits well with the numerical histogram (see figures 4(a) and 5(a)). Finally,
we present an approximated result for the dynamical behaviour of the average value (over the
unbroken bonds) of the thresholds 〈x〉(t). This quantity can be seen as a characterization of
the average resistance of the material in time.

In order to find the evolution equation of 〈x〉(t) for damage rule 1, it is enough to multiply
both sides of equations (13) and (16) by x and integrate them in the whole interval [0, 1]. Then
one finds

〈x〉(t + 1) =
(

1 − nt − 2

2(N − t − 1)

)
〈x〉(t)

−1 + nt/[2(N − t − 1)]

N − t − 1

∫ 1

0
dx

[
1 −

∫ x

0
dy φt (y)

]N−t
. (18)

For damage rule 2, the way to find the equation for 〈x〉 is even simpler. In fact, it is enough to
consider that at each time-step, the global effect on 〈x〉 is equivalent to removing two bonds
with resistance equal to the minimal one at that time. Therefore, one can write

〈x〉(t + 1) =
(

1 +
1

N − t − 1

)
〈x〉(t)− 2

N − t − 1

∫ 1

0
dx

[
1 −

∫ x

0
dy φt (y)

]N−t
. (19)

For rule 1, it is simple to see, from equation (18), that 〈x〉(t + 1) < 〈x〉(t) until nt > 2
(which is verified for all times). This means that on average the medium weakens during the
evolution even if the weakest bond is removed at any time step. This is due to the fact that, in
this case, the weakening of the neighbours of the weakest interface bond has a stronger effect
on the material than the removal of the weakest bond itself. For rule 2, instead, one finds that
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Figure 6. (a) Spanning time versus system size L for weakening rule 1. One can see a good
agreement with the expected scaling law tsp(L) ∝ L2. (b) Solution of equation (18) compared
with numerical simulations.

〈x〉(t + 1) > 〈x〉(t), if 〈x〉(t) is larger than twice the average minimal threshold, and, due to the
extremal nature of the dynamics, this is verified always in the large-N limit, i.e. in the limit of a
large number of bonds in the interface at any time-step. This means that, in this second case, the
damage is not strong enough to allow a global weakening of the system, which becomes more
and more rigid. This is reasonable since in rule 2 the stress on the weakest bond is redistributed
to the nearest neighbour and the total initial stress is conserved, while in rule 1 there is no total
stress conservation. In other words, in the model with rule 1 the damage is a multiplicative
effect, i.e. the damage is proportional to the old threshold (which can be big); in the model with
rule 2 the damage is reduced by the fact that at each time-step it is proportional to the minimal
threshold in the whole system. In figures 6(b) and 7(b) the time evolution of 〈x〉(t) obtained
from computer simulations is compared with the theoretical prediction. Our analytical results
are in good agreement with numerical simulations. For rule 2, numerical simulations of the
histogram show a low-x tail below the critical threshold, which tends to disappear as the system
size grows, and a non-zero slope of the part just above the critical threshold. The first one is
clearly a finite-size effect, which plays a minor role in the simulations with rule 1, because for
rule 1 the critical threshold is very small. Of course, such a finite-size effect is absent from the
theoretical results, as in all mean-field (MF) approaches. The second effect could be due to
spatial correlation induced by damage rule 2, which in the analytical approach are neglected.
This second effect does not disappear as the system size grows. Consequently the agreement
between the numerical simulations of 〈x〉(t) and equation (19) is less good than for rule 1. The
numerical 〈x〉(t), mainly because of the non-zero negative slope of φ(x) above xc, is a little
smaller than the theoretical prediction.
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Figure 7. (a) Spanning time versus system size L for weakening 2. In this case also, there is
very good agreement with the expected scaling law tsp(L) ∝ L2. (b) Solution of equation (19)
compared with numerical simulations.

With respect to real fracturing processes the behaviour of the average resistance 〈x〉(t)
obtained with rule 2 is more realistic, since in real materials one usually observes that the
material during micro-crack formation becomes more rigid, although more fragile, since the
number of bonds one has to break to have global breakdown becomes smaller and smaller.
Moreover it is worth noting that, apart from the shape of φ(x) and the behaviour of 〈x〉(t),
none of the statistical properties of the system depend on the weakening rule used.

Finally, it is worthwhile to point out that, to our knowledge, apart from the qualitative
results of [5], no quantitative experimental results are available. For example, a measurement
of the fractal dimension of cracks or their size distribution would be extremely useful to further
test the predictions of this model. At the moment, this model seems able to capture, with its
extremely simplified dynamics, some basic properties of fracturing processes for thin layers
of material under desiccation.

In conclusion, we have presented a new model for fractures, which is useful in describing
in a semi-quantitative way some basic mechanisms in drying paint- and mudlike cracking
processes, for extremely thin samples. Due to its extreme simplicity, the model is particularly
suitable for large-scale simulations and takes into account the damage effects involved in
fracture propagation. Even in this simple model we are able to analyse which conditions trigger
SOC behaviour in such systems. Furthermore, the change in the threshold distribution, induced
by the damage mechanism, allows us to write down explicitly the form of the breakdown
probability for the bonds of the sample. Possible further research could include, for damage
rule 2, a more refined computation scheme, in which two variable probability densities are
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also considered. This would be the first-order correction to our MF approach considering only
one-variable distributions, and could allow us to take into account correlations induced by the
damage rule. Such a generalization of the RTS theory, formally discussed in [19], is however
very difficult technically. Another possible extension of this paper we are considering now is
to apply real space renormalization group techniques, combined with the RTS approach, to
calculate the critical exponents of the model.
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Appendix. RTS for the damaged system

In this appendix we provide a simple derivation of the RTS probabilistic equations. As a
general remark, one has to note that in this kind of model (as well as in IP) the initial condition
of the system is characterized by independent variables (the breaking thresholds of the bonds),
identically and uniformly distributed. However, once the minimal value in the set is found and
the relative bond broken, the knowledge of this event makes the variables of the remaining
non-broken bonds no longer simply uniformly distributed in the interval [0, 1], and correlated
(no longer independent of one other). In fact, after the breaking of the bond with the minimal
threshold, one has to condition the probability of any further event to the last known event.
This information influences the probability distribution of the remaining bonds of the system
and creates correlations among them [21].

The systematic study of this ‘memory’ effect is what is called RTS [9, 19].
In order to clarify the ‘step by step’ mechanism of storage of conditional information,

let us consider a fixed time-order path At , i.e. a history of the dynamics up to time t . At is
given by the time ordered sequence {i0, i2, . . . , it−1} of the broken bonds up to time t . Let us
suppose we know the joint threshold probability density function Pt({x}∂Ct |At) of the whole
set of non-broken bonds conditioned to the knowledge of the past history At . Pt({x}∂Ct |At)
represents the ‘effective’ distribution of the disorder at the t th time-step of a fixed history At .
Note that at time t = 0, one has

P0({x}∂C0) =
∏
k∈S
p0(xk) = 1 (A1)

where S is the whole lattice, as no information from the dynamics is still present.
Since any kind of ‘order’ relation, superimposed on a set of independent stochastic

variables, introduces correlations, in general Pt({x}∂Ct |At) does not factorize in the product of
single-bond ‘effective’ density functions for t > 0 [21]. That is, it is not possible to write

Pt({x}∂Ct |At) =
∏
k∈∂Ct

pk,t (xk). (A2)

However, as shown in [20], in the limit of large number of variables the ‘geometrical’
correlations in Pt({x}∂Ct |At) become negligible, and one can make, at any time-step, the
approximation given by equation (A2). Therefore, we consider the approximated case where
the ‘effective’ probability density function of the disorder of the system, with all the information
about the past history stored, is given by the set of ‘effective’ one-bond functions pk,t (x) for
each non-broken bond k. The rigorous exposition of RTS, by using the non-factorizable
function Pt({x}∂Ct |At) at each t is given in [19].

Knowing the set of functions pk,t (x), one can write the ‘effective’ probability µi,t that
a given bond i of the set is broken at that time. It is simply the probability, conditioned
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to the whole past history, that xi is the minimum in the set of non-broken bond variables.
Consequently, it is given by equation (1), i.e.

µi,t =
∫ 1

0
dx pi,t (x)

[ ∂Ct∏
k( �=i)

∫ 1

x

dy pk,t (y)

]
. (A3)

The set of µi,t , for each non-broken bond and for each time-step, defines a branching process
of the dynamics; i.e. each history At at time t continues with a certain probability µi,t in a
different history At+1 at time t + 1 for each breaking bond i at time t . In order to continue the
probabilistic description of the branching at further time-steps, one should obtain the new set
of functions pk,t+1(x) for these different cases of breaking at time t , using only the ‘old’ set
of pk,t (x) and the set of probabilities µi,t defining the branching. This is possible by using
the notions of conditional probability. Here the simple rule relating the conditional to joint
probability of a first event A to a second event B is recalled [21]:

Prob(A|B) = Prob(A ∩ B)
Prob(B)

(A4)

where, as usual, A|B means the event A conditioned to the event B, while A ∩ B the event A
joint to the event B.

Note that ‘memory’ up to time t , for a fixed history At in the branching of all the possible
histories, is already stored in the functions pk,t (x). Consequently, in order to obtain the set of
probability functions pk,t+1(x) for the history At+1 obtained from At adding the breaking of
bond i at time t , one has to store only information about the last step.

At this point one has to distinguish the three cases: (1) the just broken bond i, (2) a
non-broken bond j far from i and (3) a non-broken neighbour l of i.

In case (1) let us call the conditioned probability density of bond i after its breaking
mi,t+1(x) instead of pi,t+1(x), remarking with this that after its breakdown, bond i is removed
definitely from the interface. Note that, since after t the bond i does not participate in the
dynamics, its ‘effective’ probability density will no longer change. mi,t (x) dx is the probability
that x < xi � x + dx, conditioned to the the past history up to its breaking. However, since the
memory up to the time-step just before its breaking is stored in the known functions pk,t (x),
mi,t (x) dx is the probability, calculated using the set of functions {pk,t (x)}, that x < xi � x+dx
(event A of equation (A4)) conditioned to the fact that the bond xi is the minimum in the set
of interface bonds at that time (event B of equation (A4)). Therefore, from equation (A4), one
has equation (2):

mi,t+1(x) = 1

µi,t
pi,t (x)

[ ∂Ct∏
k( �=i)

∫ 1

x

dy pk,t (y)

]
. (A5)

In a quite similar way we can update the effective probability densities for cases (2) and (3). In
case (2), using the set of functions {pk,t (x)},pj,t+1(x) dx is the probability that x < xj � x+dx
(eventA) conditioned to the fact that xi was the minimal value in the interface at time t . Again
from equation (A4) one has equation (3):

pj,t+1(x) = 1

µi,t
pj,t (x)

∫ x

0
dy pi,t (y)

[ ∂Ct∏
k( �=i,j)

∫ 1

y

dz pk,t (z)

]
. (A6)

In case (3) one has to distinguish the two different damage rules, and the conditioning events
are more complex. For rule 1, using the set of function {pk,t (x)}, pl,t+1(x) dx is the probability
that x < xl � x + dx (event A) conditioned to the fact that xi was the minimum and that
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the value of xl at this time-step differs from the value at the previous time-step for a random
fraction of itself (event B). One, then, obtains equation (4):

pj,t+1(x) = 1

µi,t

∫ 1

0
dy

1

y
θ(y − x)pj,t (y)

∫ y

0
dz pi,t (z)

[ ∂Ct∏
k( �=i,j)

∫ 1

z

dupk,t (u)

]
. (A7)

Finally, for rule 2, always using the set of functions {pk,t (x)}, pl,t+1(x) dx is the probability
that x < xl � x + dx (event A) conditioned to the fact that xi was the minimum and that the
value of xl at this time-step differs from the value at the previous time-step for a fraction 1/ni,t
of xi (event B). From this one has equation (5)

pj,t+1(x) = 1

µi,t

∫ 1

0
dy

[ ∂Ct∏
k( �=i,j)

∫ 1

y

dz pk,t (z)

]
pi,t (y)pj,t

(
x +

y

ni,t

)

×θ
(

ni,t

ni,t − 1
x − y

)
θ(ni,t (1 − x)− y). (A8)
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